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Abstract
Gaussian linking of superconducting loops containing Josephson junctions
with enclosed magnetic fields gives rise to interference shifts in the phase that
modulates the current carried through the loop, proportional to the magnitude
of the enclosed flux. We generalize these results to higher order linking of
a superconducting loop with several magnetic solenoids, and show that there
may be interference shifts proportional to the product of two or more fluxes.

PACS numbers: 03.65.−w, 85.25.Dq, 85.25.Cp, 03.75.Lm

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Interference effects, both constructive and destructive, are mainstays for distinguishing
between quantum and classical phenomena. Examples include interfering scattering
amplitudes, both bosonic and fermionic, formation of condensates, entanglement, etc. The
Aharonov–Bohm effect [1] describes the self-interference of a charged particle that can travel
along two semiclassical paths whose combined path is Gaussian linked with a magnetic
solenoid carrying the flux �. The measurable phase shift is φ ∝ �. We have argued in [2]
that there could exist generalizations to cases of higher order linkings. The simplest example
is a Borromean ring arrangement where the semiclassical path corresponds to one ring, which
has higher order linking with two flux tubes carrying fluxes �1 and �2, which make up the
other two rings. We found that the phase shift in this system is φ ∝ �1�2. Higher order
cases were explored in [3, 4] and shown to be related to commutator algebras of homotopy
generators of the configuration space R

3\{T1 ∪ T2}, where T1 and T2 are the tubes containing
the fluxes. The same general logic can be applied to systems of superconductors, Josephson
junctions and magnetic fluxes where the Josephson effect can arise [5]. Here we will study
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interference in a symmetric arrangement of two identical semicircular superconductors joined
by two identical Josephson junctions and derive the response of such systems. We conclude
with a discussion of possible applications.

In the case of Gaussian linking of a loop of superconductor with a magnetic solenoid,
the Mercereau effect [6] is due to the phase change in the macroscopic wavefunction, which
is in turn related to the currents in the superconducting components. The effect is due to the
presence of a vector potential A, which is the fundamental object responsible for the phase
change. Exploration of higher order linking is again due to the presence of a vector potential
but in these instances it requires careful choices of gauge.

2. The Josephson effect

It will be sufficient for our purposes to consider a macroscopic model of superconductors.
Following Feynman [7], we approximate the superconductors coupled via a Josephson junction
as a two-level system. Let ψ1 and ψ2 be the states, and E1 and E2 the energy levels of the
superconductors. The Schrödinger equation for the coupled system of the two superconductors
becomes

ih̄(∂ψ1/∂t) = E1ψ1 + K exp(iφ)ψ2, (1)

ih̄(∂ψ2/∂t) = E2ψ2 + K exp(−iφ)ψ1, (2)

where K is the coupling energy and φ is a phase, which arises from the most general
Hermitian Hamiltonian 2 × 2 matrix. The dependence of φ on the vector potential A can
be found from gauge invariance considerations. For a gauge transformation A �→ A + ∇f ,
ψ1 �→ ψ1 exp(iqf/2h̄c), ψ2 �→ ψ2 exp(−iqf/2h̄c) with an arbitrary function f of space
coordinates, we find φ �→ φ + qf/h̄c, from which it follows that φ = (q/h̄c)

∫
A · dx. Here

q = 2e is the charge of an electron pair.
After the substitutions ψ1 = |ψ1| exp(iθ1) and ψ2 = |ψ2| exp(iθ2), the Schrödinger

equation becomes

h̄(∂|ψ1|2/∂t) = 2K|ψ1||ψ2| sin θ, (3)

h̄(∂|ψ2|2/∂t) = −2K|ψ1||ψ2| sin θ, (4)

−h̄|ψ1|(∂θ1/∂t) = E1|ψ1| + K|ψ2| cos θ, (5)

−h̄|ψ2|(∂θ2/∂t) = E2|ψ2| + K|ψ1| cos θ, (6)

where θ = φ + θ2 − θ1. The current from superconductor 1 to superconductor 2,
which is equal to minus the current from superconductor 2 to superconductor 1, is thus
I = (2K/h̄)|ψ1||ψ2| sin θ . (In a self-consistent computation, a current from a battery which
connects the two superconductors is also included. The result for the superconducting current
is precisely I; see, for example, [8].) The electron densities in the two superconductors are
approximately equal and independent of time; let ρ be this common constant. This gives
I = I0 sin θ , where I0 = 2Kρ/h̄. Integrating the phase equations, we find

θ(t) = φ + θ(0) + h̄−1
∫ t

0
dt ′(E1(t

′) − E2(t
′)). (7)

The quantity (E1(t) − E2(t))/q represents an electric potential applied to the junction. The
dc and ac Josephson effects [5] arise for |E1(t) − E2(t)| � K and |E1(t) − E2(t)| � K ,
respectively.
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Figure 1. A diagram of an experimental setup for the detection of the Josephson effect. C′ and
C′′ are the paths from the point P to the point Q through the superconductors with the Josephson
junctions J ′ and J ′′ and the total current I from P to Q. C1 is the magnetic solenoid carrying the
flux �1. The Josephson effect (for a review see [9]) is due to the first-order (Gaussian) linking of
the closed curves C = C′C′′−1 and C1.

Our interest here is in the Josephson effect with zero potential across the junction,
E1(t) − E2(t) = 0, and nonzero magnetic field constrained to the opening of the
superconducting ring with two Josephson junctions, see figure 1. Let θ ′ and θ ′′ be the
phase changes due to the vector potential A1 of the currents through the junctions J ′ and J ′′.
The phase changes from the point P to the point Q along the paths C ′ and C ′′ are

φ′ = θ ′ + (q/h̄c)

∫
C ′

A1 · dx, (8)

φ′′ = θ ′′ + (q/h̄c)

∫
C ′′

A1 · dx. (9)

Since the wavefunction is single valued, this requires φ′ = φ′′, and so we find that
θ ′′ − θ ′ = 2π�1/�0. Here �1 = ∮

C
A1 · dx is the flux due to the solenoid along C1

passing through a surface spanned by a closed curve C = C ′C ′′−1 and �0 = 2πh̄c/q is the
flux quantum. The total current from the point P to the point Q is

I = I0 sin
(

1
2 (θ ′ + θ ′′)

)
cos (π�1/�0). (10)

For a fixed value of �1, the corresponding maximal total current is

Imax = I0| cos (π�1/�0)|, (11)

which itself has maxima when �1 = n�0, n ∈ Z.
The flux is actually �1 = �1,ext + LI where �1,ext is the external flux through the loop,

L is the self-inductance, but here and in what follows we assume that L is negligible. (We
have made a number of simplifying assumptions, for example, that self-inductance of SQUID
components are negligible, none of which, if relaxed, affect our basic conclusions.)

We will call the phenomena reviewed in this section the first-order Josephson effects to
distinguish them from their generalizations which we now proceed to describe.

3. The second and higher order Josephson effects

Now consider the case where we have two solenoids carrying the magnetic fluxes �1 and
�2 and whose center lines run along C1 and C2, and a superconducting ring along the
closed curve C = C ′C ′′−1 with two Josephson junctions J ′ and J ′′ in parallel as shown
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Figure 2. A diagram of an experimental setup for the detection of the second-order Josephson
effect. C1 and C2 are the magnetic solenoids. C′ and C′′ are the paths from the point P to the point
Q through the superconductors connected by Josephson junctions J ′ and J ′′. The total current from
P to Q is I. C1 and C2 are the magnetic solenoids carrying the fluxes �1 and �2. The second-order
Josephson effect is due to the second-order linking of the set of three closed curves C = C′C′′−1,
C1 and C2.

C1 C2

C

Figure 3. Classic form of the Borromean rings.

C1 C2

C

Figure 4. Borromean rings altered by fixing C1 and C2 as hard rings, allowing C to be flexible and
then pulling on C1 and C2.

in figure 2. The two solenoids and the superconducting ring are in a Borromean ring [10]
configuration. Note that in this arrangement neither C1 nor C2 has Gaussian linking with the
superconducting ring C, nor do C1 and C2 link with each other. However, the set of three rings
C,C1, C2 is indeed linked. This second-order linking and its higher order generalizations
are what will lead to our results. We will find that even though our system lacks first-
order (Gaussian) linking, a phase difference can still be nonzero upon traveling around the
superconductor.

To begin the analysis of the Borromean rings, we first need to show the precise form of the
path C. In particular, we will show that C has no Gaussian linking with C1 or C2, yet the three
paths are still inextricably linked. First, we draw the three rings, see figure 3. Now assume
that C is flexible, but C1 and C2 are not, and pull on C1 and C2 to arrive at the configuration
shown in figure 4. Now pinch C as shown in figure 5 and note that we have labeled C as a set
of four components. Following the full circuit around C, we first travel along a1, followed by

4



J. Phys. A: Math. Theor. 43 (2010) 225301 R V Buniy and T W Kephart

C1 C2

a1

a2

a−1
1

a−1
2

Figure 5. Borromean rings where path C has become a comutator a1a2a
−1
1 a−1

2 .

a2, followed by a−1
1 and finally by a−1

2 . (Construction with string and wire can be useful at
this point.) Note that a1 links with C1 and a2 links with C2 in the positive sense, respectively,
while a−1

1 and a−1
2 link with C1 and C2 in the negative sense, respectively. As a result, the

entire path C runs through C1 once in the positive and once in the negative sense, so the total
Gaussian linking of C with C1 vanishes. Likewise, the Gaussian linking of C with C2 vanishes.
Nevertheless, the total path C is not trivial. This is because the paths a1 and a2 do not commute
[11]. In fact, we have transformed the path C into a commutator path, which we can write in
a multiplicative form as

C = a1a2a
−1
1 a−1

2 . (12)

We now must find a way to detect the phase due to the higher order linking of this
commutator path with the two solenoids. To find this phase, we first need to choose a gauge
that is capable of detecting it. As we will see, such a gauge is [2]

A12 = 1
2k2(γ1A2 − γ2A1). (13)

Here A1 and A2 are the vector potentials due to the solenoids along C1 and C2, and the
quantities γ1 and γ2 (not to be confused with integrals (8) and (9)) are defined by

γj = δj + (q/h̄c)

∫
�

Aj · dx, (14)

where δ1 and δ2 are constants, and � is a path that runs along C. The quantity k2 is a
normalization constant, the value of which we discuss below. Our task is then to integrate A12

around C, written in terms of a commutator path, and show that it delivers a non-vanishing
phase

φ12 = θ ′ − θ ′′ = (q/h̄c)

∮
C

A12 · dx, (15)

which only depends on the topology of the path.
We begin at the initial position (γ1, γ2) = (δ1, δ2). We first integrate along a1 to get

(δ1 + �1, δ2), picking up an area δ2�1, which corresponds to a contribution of − 1
2δ2�1 to

the phase k−1
2 φ12. Next, a2 takes us to (δ1 + �1, δ2 + �2) and it generates a contribution

1
2 (δ1 + �1)�2. Next, a−1

1 takes us to (δ1, δ2 + �2) and contributes 1
2�1(δ2 + �2). Finally,

a−1
2 returns us to (δ1, δ2) and contributes − 1

2δ1�2. The total contribution to the phase is
k−1

2 φ12 = �1�2 for traversing the full loop C. We find that

φ12(C) = k2
e2

h̄2c2
�1�2 (16)

once physical units have been restored. Note that this result is independent of the initial point
(δ1, δ2) where we choose to start the path C. It is straightforward to check that an integral of A12

over a closed path is path independent if and only if the path can be written as a commutator.
This is precisely the case for the Boromean rings, and hence A12 is an appropriately chosen
gauge potential.
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Now returning to our specific generalized Josephson configuration in the form of
Borromean rings, we need only replace A1 in the usual Josephson configuration with A12

in the phase integrals (8) and (9) so that θ ′′ − θ ′ becomes 4π2k2�1�2/�2
0. Hence, the total

current from the point P to the point Q is

I = I0 sin
(

1
2 (θ ′ + θ ′′)

)
cos

(
2π2k2�1�2

/
�2

0

)
. (17)

For fixed values of �1 and �2, the maximal total current flowing in the superconductor is

Imax = I0

∣∣ cos
(
2π2k2�1�2

/
�2

0

)∣∣. (18)

The smallest value of the constant k2 > 0 for which the fluxes �1 = m1�0, �2 = m2�0,
where m1,m2 ∈ Z, lead to maxima of the quantity Imax is k2 = (2π)−1. This is precisely the
value we obtained in [2] by imposing an analog of the Dirac string condition on the second-
order phase for the Aharonov–Bohm effect. Nevertheless, the value of k2 must ultimately be
determined by experiment.

Also, for the value k2 = (2π)−1, if either �1 or �2 is equal to �0 or −�0, then in terms
of the other flux, appropriately relabeled, expression (18) for the second-order Imax reduces to
expression (11) for the first-order Imax.

An essential feature of the above result is that the current I is a periodic function of the
quantity πk2�1�2

/
�2

0 with period 1. We can also derive this property by modifying the
method used by Block [12] for the first-order Josephson effect as follows.

The total gauge potential includes internal and external parts, A = Ain +Aext, the external
magnetic field being due to the external sources. Assuming that the external field ∇ × Aext

vanishes inside the superconductors, we can write Aext = ∇γext. As a result, A is a gauge
transformation of Ain, and so

ψ(Ain + Aext) = ψ(Ain) exp(iqγext/h̄c). (19)

Since ψ(A) is single valued, we find that ψ(Ain) is multiplied by the factor
exp

(−4iπ2k2�1�2
/
�2

0

)
after the charge q travels around a closed curve C. This factor is

a periodic function of πk2�1�2/�2
0 with period 2. This implies the same periodicity property

for the wavefunction ψ(Ain) and the energy E. Assuming time reversal symmetry as in [12],
we find that the free energy and thus the current, which is given by minus the derivative of
the free energy with respect to the external flux, are both periodic functions of πk2�1�2

/
�2

0
with period 1, in agreement with the result proved earlier.

More generally, it is straightforward to arrange n solenoids with the fluxes �1, . . . , �n

and a superconducting ring in such a way that they are linked with nonzero nth-order linking
[10]. We similarly find the phase difference

θ ′′ − θ ′ = (2π)nkn�1 · · · �n

/
�n

0, (20)

the current

I = I0 sin
(

1
2 (θ ′ + θ ′′)

)
cos

(
1
2 (2π)nkn�1 · · · �n

/
�n

0

)
(21)

and its maximal value for fixed values of �1, . . . , �n

Imax = I0

∣∣ cos
(

1
2 (2π)nkn�1 · · ·�n

/
�n

0

)∣∣. (22)

Other properties of these systems can be investigated.
The smallest value of the constant kn > 0 for which the fluxes �j = mj�0, where

mj ∈ Z, lead to the maxima of the quantity Imax is kn = (2π)1−n. Again this is precisely the
value we obtained in [2, 3] by imposing an analog of the Dirac string condition on the phase
for the nth-order Aharonov–Bohm effect. Nevertheless, as pointed out with the k2 case above,
the value of kn must ultimately be determined by experiment.
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Also, for the value kn = (2π)1−n, if one of the fluxes is equal to �0 or −�0, then in
terms of the remaining fluxes, appropriately relabeled, expression (22) for the nth-order Imax

reduces to the analogous expression (22) for the (n − 1)st-order Imax.
Similar to the case n = 2 above, we can modify the method used by Block and prove that

for any n the current I is a periodic function of the quantity 1
2 (2π)n−1kn�1 · · · �n

/
�n

0 with
period 1.

4. Discussion and conclusion

Our previous work on the subject of higher order phases [2, 3] focused on generalizations
of the Aharonov–Bohm experiment because we believe higher order interference effects are
most easily understood in the language of the Aharonov–Bohm effect where wavefunction
self-interference is most evident as measured by electron holography. In contrast, this paper,
while being intimately related to the previous work, is focused on higher order phase effects
in superconducting quantum interference experiments. Specifically, we have generalized the
Josephson effect from the first-order (Gaussian) linking case to second-order linking of the
Borromean ring type and have shown that the second-order phase in the current depends on
the product of the magnetic fluxes in the two solenoids as shown in figure 2. We also discussed
higher order analogs where a superconducting loop containing Josephson junctions links with
several magnetic solenoids and where the resulting interference shifts are proportional to the
product of multiple fluxes. We hope that the present paper is useful to the low-temperature
community since it translates and extends our previous results into an alternate form that
suggests how one would measure higher order interference effects via currents flowing through
SQUIDs. The above results should be useful for providing a broader understanding of higher
order interference effects.

The Josephson junction experimental setup we suggest for measuring higher order phases
is perhaps somewhat over simplified but still sufficiently realistic that it could be used as a
starting point for an experimentalist who wants to make a practically designed experiment
that incorporates contingencies to deal with potential issues, such as stray fields modifying
the Hamiltonian, experimental separation of first and higher order effects, etc. We should
mention that if higher order interference effects are found in one system, then it would suggest
that there could be many other systems with similar behavior, from neutron beams to atomic
Bose–Einstein condensates.

One can conceive of a number of applications for devices built to take advantage of higher
order linking. Such a system could be less invasive than first-order devices because it could
keep the SQUID some distance from an experimental sample. Possible applications include
both rf and dc SQUIDs that measure higher order linking of multiple fluxes. Under some
circumstances such devices could be useful in measurements of complex biological systems,
or any systems where direct Gaussian linking of a magnetic flux with a SQUID is impractical,
but where higher order linking is possible. For example, one could have a system of (i) a
fixed but adjustable flux tube, i.e. a solenoid; (ii) an unknown flux to be measured; and (iii)
a SQUID. If the three components can be arranged to have higher order linking, then the
unknown flux could be measured, even though it has no Gaussian linking with the SQUID.
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